BilBOWA: Fast Bilingual Distributed Representations without Word Alignments

نویسندگان

  • Stephan Gouws
  • Yoshua Bengio
  • Gregory S. Corrado
چکیده

We introduce BilBOWA (Bilingual Bag-ofWords without Alignments), a simple and computationally-efficient model for learning bilingual distributed representations of words which can scale to large monolingual datasets and does not require word-aligned parallel training data. Instead it trains directly on monolingual data and extracts a bilingual signal from a smaller set of raw-text sentence-aligned data. This is achieved using a novel sampled bag-of-words cross-lingual objective, which is used to regularize two noise-contrastive language models for efficient cross-lingual feature learning. We show that bilingual embeddings learned using the proposed model outperform state-of-the-art methods on a cross-lingual document classification task as well as a lexical translation task on WMT11 data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Bilingual Word Representations by Marginalizing Alignments

We present a probabilistic model that simultaneously learns alignments and distributed representations for bilingual data. By marginalizing over word alignments the model captures a larger semantic context than prior work relying on hard alignments. The advantage of this approach is demonstrated in a cross-lingual classification task, where we outperform the prior published state of the art.

متن کامل

Bilingual Embeddings and Word Alignments for Translation Quality Estimation

This paper describes our submission UFAL MULTIVEC to the WMT16 Quality Estimation Shared Task, for EnglishGerman sentence-level post-editing effort prediction and ranking. Our approach exploits the power of bilingual distributed representations, word alignments and also manual post-edits to boost the performance of the baseline QuEst++ set of features. Our model outperforms the baseline, as wel...

متن کامل

Bilingual Word Embeddings from Parallel and Non-parallel Corpora for Cross-Language Text Classification

In many languages, sparse availability of resources causes numerous challenges for textual analysis tasks. Text classification is one of such standard tasks that is hindered due to limited availability of label information in lowresource languages. Transferring knowledge (i.e. label information) from high-resource to low-resource languages might improve text classification as compared to the ot...

متن کامل

An Autoencoder Approach to Learning Bilingual Word Representations

Cross-language learning allows one to use training data from one language to build models for a different language. Many approaches to bilingual learning require that we have word-level alignment of sentences from parallel corpora. In this work we explore the use of autoencoder-based methods for cross-language learning of vectorial word representations that are coherent between two languages, w...

متن کامل

Convolution-Enhanced Bilingual Recursive Neural Network for Bilingual Semantic Modeling

Estimating similarities at different levels of linguistic units, such as words, sub-phrases and phrases, is helpful for measuring semantic similarity of an entire bilingual phrase. In this paper, we propose a convolution-enhanced bilingual recursive neural network (ConvBRNN), which not only exploits word alignments to guide the generation of phrase structures but also integrates multiple-level ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015